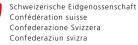
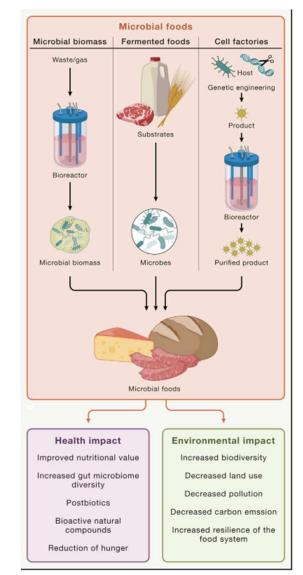


Innovative pulse and cereal-based food fermentations for human health and sustainable diets


Fermented foods for health- what are the evidences?

Rikard Landberg

Professor and Head of Division of Food and Nutrition Science, Department of Life Sciencs, Chalmers University of Technology, Gothenburg, Sweden



Project funded by

Microbioal foods

All types of microbial foods have the potential to positively impact human and planetary health.

Fermented foods— traditionally produced from grains, seeds, nuts, legumes, fruit, vegetables, roots, milk, meat, and fish through the controlled transformation by microorganisms.

Microbial biomass --- produced from a defined sugar source such as glucose but also possibly from different waste streams or atmospheric gases, followed by the harvesting of microbial biomass and its processing into palatable and safe foods.

Cell factories --- defined microorganisms that are selected and (genetically) optimized to produce certain compounds. These compounds are usually purified and used for various applications—such as enzymes for baking.

Jahn et al. (2023) Cell

Fermented foods and beverages

"Foods made through desired microbial growth and enzymatic conversions of food components"

3

Marco et al., 2021, The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods

Fermented foods

~8000 BC ~1/3 of the world's food consumption

>3500 fermended food products Milk, cereals, legumes, vegetables, the, meat and fish

(Xiang et al., 2019. Food Science and Human Wellness)

Fermented foods

Food stability

Food saftey

Sensory characteristics

Perceived healthbenefits

5

Perceived health-benefits of fermented foods

Recommendations & claims?

- Despite the many *potential* benefits of fermented foods, their recommended consumption has not been widely translated to global inclusion in food guides.
- One exception in Asia is the Indian food guide, which stresses the consumption of fermented foods for the public and specifically, for pregnant women ("*eat more whole grains, sprouted grams and fermented foods*"
- Only one claim for beneficial microbes has been approved in the European Union (EU) (yoghurt improves lactose tolerance)

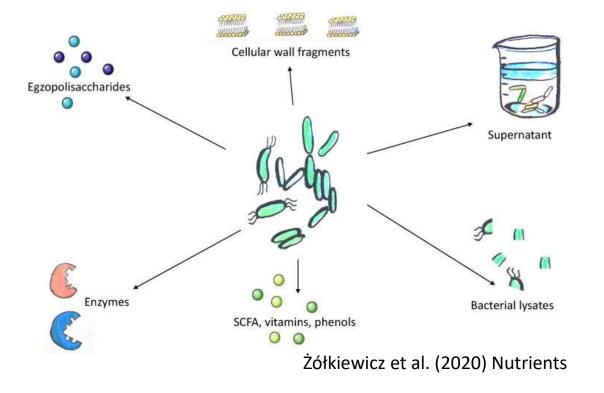
Description and microbial content of common fermented foods

Name	Description	Region of Origin	Source of Microorganisms	Microorganisms Identified in Final Product *
Kefir	Fermented milk beverage	Caucasus	Starter culture	Lactobacillus kefiri, Lactobacillus paracasei, Lactobacillus parabuchneri, Lactobacillus casei, Lactobacillus lactis, Lactococcus lactis, Acetobacter lovaniensis, Kluyveromyces Lactis, Saccharomyces cerevisiae
Kombucha	Fermented tea beverage	China	Starter culture	Komagataeibacter xylinus, Saccharomyces cerevisiae, Zygosaccharomyces bailii. Brettanomyces bruxellensis, Acetobacter pasteurianus, Acetobacter aceti, Saccharomyces cerevisiae, Zygosaccharomyces bailii, Brettanomyces bruxellensis, Acetobacter xylinum Zygosaccharomyces spp., Acetobacter, Gluconacetobacter
Sauerkraut	Fermented cabbage	China	Spontaneous	Lactobacillus sakei, L. plantarum, Candidatus accumulibacter phosphatis, Thermatoga spp., Pseudomonas rhizosphaerae, L. hokkaidonensis, L. rhamnosus, Leuconostoc carnosum, Clostridium saccharobutyrilicum, Rahnella aquatillis, Citrobacter freundii, Enterobacter cloacae, Bifidobacterium dentium, Enterococcus faecalis, Lactobacillus casei, Lactobacillus delbrueckii, Staphylococcus epidermidis, Lactobacillus curvatus, Lactobacillus brevis, Weissella confusa, Lactococcus lactis, Enterobacteriaceae, Leuconostoc spp., Yarrowia brassicae
Tempeh	Fermented boiled and dehulled soybeans	Indonesia	Starter culture (Rhizopus oligoporus)	Enterococcus faecium, Rhizopus oryzae, Rhizopus oligoporus, Mucor indicus, Mucor circinelloides, Geotrichum candidum, Aureobasidium pullulans, Alternaria alternata, Cladosporium oxysporum, Trichosporon beigelii, Clavispora lusitaniae, Candida maltosa Candida intermedia, Yarrowia lipolytica, Lodderomyces elongisporus, Rhodotorula mucilaginosa, Candida sake, Hansenula fabiani, Candida tropicalis, Candida parapsilosis, Pichia membranefaciens, Rhodotorula rubra, Candida rugosa, Candida curvata, Hansenula anomola
Natto	Fermented soybean	Japan	Starter culture (Bacillus subtilis natto)	Data not available
Miso	Fermented soybean paste	Japan	Starter culture (Aspergillus oryzae)	Bacillus subtilis, Bacillus amyloliquefaciens, Staphylococcus gallinarum, Staphylococcus kloosii, Lactococcus sp. GM005
Kimchi	Fermented vegetable dish	Korea	Spontaneous, Addedcommercially	Leuconostoc gasicomitatum, Leuconostoc gelidum, Leuconostoc mesenteroides, Weissella koreensis, Weissella confuse, Lactobacillus sakei, Lactobacillus plantarum, Lactobacillus curvatus, Trichosporon domesticum, Trichosporon loubieri, Saccharomyces unisporus, Pichia kluyveri
Sourdough bread	Bread made from longer ferment	Middle East and Europe	Spontaneous or backslopping	Data not available

Dimidi et al. (2019)

Perceived health-benefits of fermented foods

- Little is known
- Observational studies, few intervention trials
- Yoghurt



Żółkiewicz et al. (2020) Nutrients

Postbiotics

HealthFerm

Postbiotics- Preparation of inanimate microorganisms and/or their components that confers a health benefit on the host.

Effective postbiotics must contain *inactivated microbial cells* or *cell components*, with or without *metabolites*, that contribute to observed *health benefits*

Salminen et al. (2021) Nat Rev Gastroenterol Hepatol.

Products of gut microbial fermentation of **carbohydrates**, **protein** and **dietary polyphenols**

Mediators of health effects?

Metabolite	Pathway	Genera or species				
Acetate	Pyruvate decarboxylation to acetyl-CoA	Akkermansia muciniphila, Bacteroides spp., Bifidobacterium spp., Prevotella spp., Ruminococcus spp., ^{21,215–28}				
	Wood-Ljungdahl pathway	Blautia hydrogenotropphica, Clostridium spp., Streptococcus spp. ^{21,26-38}				
Propionate	Acrylate pathway	Coprococcus catus, Eubacterium hallii, Megasphaera elsdenii, Veillonella spp. ^{21,26–28}				
	Succinate pathway	Bacteroides spp., Dialister spp., Phascolarctobacterium succinatutens Veillonella spp. ^{71,26–28}				
	Propanediol pathway	Roseburia inulinivorans, Ruminococcus obeum, Salmonella enterica ^{21,26} -				
Butyrate	Classical pathway via butyrate kinase	Coprococcus comes, Coprococcus eutactus ^{21,25-28}				
	Alternate pathway using exogenous acetate	Anaerostipes spp., C. catus, E. hallii, Eubacterium rectale, Faecalibacteerium prausnitzii, Roseburia spp. 71272425				
Short-chain fatty acids and branched-chain fatty acids	Amino acid fermentation through various dissimilatory proteolytic reactions	Acidaminococcus spp., Acidaminobacter spp., Campylobacter spp., Clostridia spp., Eubacterium spp., Fusobacterium spp., Peptostreptococcus spp. ^{71,26–31,44}				
'Kynurenines' (kynurenine and its	Various bacterial enzymes homologous to mammalian enzymes of the kynurenine pathway	Lactobacillus spp., Pseudomonas aeruginosa ¹⁰ , Pseudomonas fluorescens ⁴⁵				
derivatives)		Putative: Pseudomonas spp., Xanthomonas spp., Burkholderia spp., Stenotrophomonas spp., Shewanella spp., Bacillus spp., members of Rhodobacteraceae, Micrococcaceae and Halomonadaceae families*				
Indole	Hydrolytic β -elimination of tryptophan to indole (tryptophanase)	Achromobacter liquefaciens, Bacteroides ovatus, Bacteroides thetaiotamicron, Escherichia coli, Paracolobactrum coliforme, Proteus vulgaris ^{11,14}				
Indole derivatives	Multiple	Bacteroides spp., Clostridium spp. (Clostridium sporogenes, Clostridiun cadaveris, Clostridium bartlettii), E. coli, Lactobacillus spp., E. halli, Parabacteroides distasonis, Peptostreptococcus spp. (Peptostreptococcu anaerobius) ^(11,46,57)				
Tryptamine	Decarboxylation of tryptophan	C. sporogenes, Ruminococcus gnavus ¹⁵⁵				
Serotonin	Induction of host synthesis*	Indigenous spore-forming bacteria, dominated by Clostridium spp. ¹⁰ and Turicibacter spp. ¹⁰				
Histamine	Decarboxylation of histidine (histidine	E. coli, Morganella morganii, Lactobacillus vaginalis ¹⁰⁵				
	decarboxylase (HDC))	Putative: Fusobacterium spp. ¹⁶⁶				
Imidazole propionate (ImP)	Non-oxidative deamination of histidine to urocanate followed by reduction of urocanate to ImP by urocanate reductase (UrdA)	Aerococcus urinae, Adlercreutziae equolifaciens, Anaerococcus prevotii, Brevibacillus laterosporus, Eggerthella lenta, Lactobacillus paraplantarum, Shewanella oneidensis, Streptococcus mutans ¹⁰⁶				
Dopamine	Decarboxylation of levodopa (L-DOPA) via tyrosine decarboxylase (TyrDC)	Enterococcus spp. (Enterococcus faecalis, Enterococcus faecium, 77 human isolates of Enterococcus spp.), Lactobacillus brevis, Helicobacter pylori ^{cu, sm}				
p-Cresol	From tyrosine or phenylalanine via two pathways: direct cleavage of the $C\alpha$ - $C\beta$ bond in	Assay proven: Blautia hydrogenotrophica, Clostridioides difficile, Olsenella uli, Romboutsia lituseburensis ¹⁰⁰				
	tyrosine to yield p-cresol by tyrosine lyase; and a series of reactions involving transamination, deamination and decarboxylation of tyrosine or phenylalanine via formation of the cresol precursor phenylacetic acid ¹¹⁰⁰	Predicted: Acidaminococcus fermentans, Anaerococcus vaginalis, Anaerostipes spp., Bacteroides spp., Bifidobacterium infantis, Blautia spp., Citrobacter koseri, Clostridium spp., Eubacterium siraeum, Fusobacterium spp., Klebsiella pneumoniae, Lactobacillus spp., M. elsdenii, Roseburia spp., Ruminococcus spp., Veillonella parvula ¹¹⁸				
Phenylacetylglutamine (PAGIn) and phenylac- etylglycine (PAGly)	Synthesized during host hepatic phase II metabolism via conjugation of either glutamine or glycine to phenylacetic acid, an intermediate in microbial fermentation of phenylalamine. ¹¹⁰	Conjugation of phenylacetic acid to glutamine or glycine occurs in the host liver; see p-cresol (above) for information about its precursor phenylacetic acid				

Krautkrame et al. (2021) Nature Reviews

12

Health-benefits of fermented foods - yoghurt

Area studied	Total no. of studies	Study types	No. of positive- quality studies	No. of neutral- quality studies	No. of negative- quality studies	Fermented products studied	Comparators	No. of studies with favorable outcome	No. of studies with no significant effect	No. of studies with unfavorab outcome
Gastroint estinal health and disease	26	RCT=16 RCOT=8 CS=1	19	6	1	Yogurt, fermented milk, fermented milk drinks, pasteurized yogurt, probiotic yogurt, kefir	Dahi, ultra-heated yogurt, non- fermented dairy product, milk pasteurized yogurt, acidified	20	6	0
CONCLUS	IONS	5								
Consisten	t ass	ociat	tions	s exi	ist be	etween fermente	ed milk			
								16	11	1
consumpt	tion a	and	redu	iced	l risk	of breast and co	lorectal			
-						of breast and co maintenance. an				
cancer, T2	2D, ir	npro	oved	we	ight	maintenance, an				
-	2D, ir	npro	oved	we	ight	maintenance, an		19	3	0
cancer, T2	2D, ir	npro r, bo	oved	we	ight	maintenance, an			3	0
cancer, T2 cardiovas	2D, ir culai	npro r, bo	oved	l we and	ight GI h	maintenance, an ealth.	d improved	19	3 5 1	0 3 0

Associations between yoghurt and reduced risk of:

- Breast and coloncancer
- Type 2 diabetes
- Improved weight management
- Improved inflammatory markers, cardiovascular, bone, and GI health

Savaiano, 2020, Nutrition Reviews SaeidiFard, 2019, Clinical Nutrition ESPEN Baruah, 2022, Journal of Applied Microbiology

Savaiano and Robert W. Hutkins (2020) Nutrition Reviews

Effects of Kefir on gasatrointestinal health (intervention studies)

Study	Study Design	Study Population	Intervention	Control	Duration	Gut Microbiota	Other Findings
Ino et al., 2015 [58]	Non-randomised, cross-over controlled intervention	Constipation, n = 11	6 g/day lyophilized kefir. 3 g/day lactose in last 40 day of treatment period	6 g/day powdered milk (baby-formula)	3 months	Not reported	Only three of the 11 participants experienced "more frequent BM without laxative use". Summary descriptive statistics not shown.
Maki et al., 2018 [59]	Non-randomised, cross-over intervention study	Constipation (hospitalised), $n = 42$	6 g/day of lyophilized kefir	6 g/day powdered milk	12 weeks each period	Not reported	No difference in laxative use between kefir and control groups (7.5 times/3 months vs 8.1 times/3 months; $p = 0.35$). No difference in number of people who did not require laxatives. No difference in stool consistency/volume.
Turan et al., 2014 [60]	Non-randomised, uncontrolled intervention study	Functional constipation, n = 20	500 mL/day kefir	-	4 weeks	Not reported	Increased stool frequency at follow-up compared to baseline (median 2 BM/week vs 5 BM/week; $p < 0.001$). Fewer people with hard stools at follow-up compared to baseline (12/20 vs 6/20; $p = 0.014$). Improvement in bowel satisfaction scores ($p = 0.001$). Reduction in gut transit time in participants with slow gut transit time at baseline ($p = 0.013$). No change in straining or laxative use. No major adverse events.
Bekar et al., 2011 [61]	Double-blind RCT	Dyspepsia and H. pylori infection, n = 85	500 mL/day kefir	250 mL/day milk	2 weeks	Not reported	Higher <i>H. pylori</i> eradication rate in kefir <i>vs</i> control (78% <i>vs</i> 50%; $p = 0.026$). Lower occurrence of diarrhoea (relative risk RR = 0.48; $p = 0.001$), headache (RR=0.17; $p = 0.008$), nausea (RR = 0.47; $p = 0.029$), and abdominal pain (RR = 0.38; $p < 0.001$).
Hertzler et al., 2003 [57]	Cross-over RCT	Lactose malabsorption, <i>n</i> = 15	1) 508 mL/day plain kefir 2) 519 g/day raspberry flavoured kefir (equivalent to 20 g lactose)	3) 407 mL/day low fat cow's milk 4) 378 g/day plain yoghurt (equivalent to 20 g lactose)	Acute 5-day study, each treatment followed by an 8 h breath H ₂ test	Not reported	 Higher breath H₂ AUC in milk compared with plain kefir (<i>p</i> = 0.001), plain yogurt (<i>p</i> = 0.001), or flavoured yogurt (<i>p</i> = 0.005). Higher breath hydrogen AUC in flavoured kefir compared to plain yogurt (<i>p</i> = 0.043) or plain kefir (<i>p</i> = 0.008). No difference in breath hydrogen AUC between flavoured kefir and milk (<i>p</i> = 0.425) or flavoured yogurt (<i>p</i> = 0.331). No difference in flatulence severity and frequency, diarrhoea and abdominal pain.

Dimidi et al. (2019) Nutrients

Effects of sauerkraut, soy products and kimchi in gastrointestinal health and disease (interventions)

Study	Fermented Food	Study Design	Study Population	Intervention	Control	Duration	Gut Microbiota	Other Findings
Fujisawa et al., 2006 [104]	Natto/miso	Uncontrolled open-label study	Healthy, n = 8	200 mL miso soup containing 50 g Natto per day	-	2 weeks	Following natto-containing soup: Higher <i>Bifidobacteria</i> and Bacilli, Lower Enterobacteriaceae, Higher acetic acid and propionic acid (all <i>p</i> < 0.05)	-
Kil et al, 2004 [105]	Kimchi	Non-randomised trial	<i>H. pylori</i> infection, n = 6	300 g of kimchi	60 g of kimchi	4 weeks	Increased Lactobacillus ($p = 0.0003$) and Leuconostoc ($p = 0.0004$)	H. pylori not eradicated in any participants ($p = 0.944$). Lower stool pH ($p = 0.0001$), β -glucuronidase ($p = 0.0065$) and β -glucosidase ($p = 0.0001$) activity
Mitsui et al., 2006 [106]	Natto	Controlled trial	Infrequent bowel movements, n = unknown	50 g/day Natto (Bacillus subtilis K-2, 3.8 × 10 ⁹ CFU)	50 g/day boiled soybeans	2 weeks	Following Natto compared to control: Increased ratio of stool <i>Bifidobacteria</i> :total bacteria	Following Natto compared to control: Higher number of bowel movements. Higher number of days with bowel movements Higher stool quantity
Nielsen et al., 2018 [18]	Sauerkraut	Randomised, double-blind controlled trial	Irritable bowel syndrome, n = 58	75 g/day unpasteurised sauerkraut containing LAB	75 g/day pasteurised sauerkraut	6 weeks	No significant effects of either unpasteurised or pasteurised sauerkraut on microbiota composition	Lower IBS-SSS score following both unpasteurised ($p = 0.003$) and pasteurised ($p = 0.04$) sauerkraut No difference in change in IBS-SSS between groups

Dimidi et al. (2019) Nutrients

Effects of sourdough bread in gastrointestinal health and disease

Study	Study Design	Study Population	Intervention	Control	Duration	Other Findings
Korem et al., 2017 [170]	Randomised crossover trial	Healthy, n = 20	145 g sourdough wholegrain wheat bread	110 g white wheat bread	1 week	Significant interpersonal variability in glycaemic responses Baseline microbiome could predict type of bread that results in lower glycaemic response in each participant
Polese et al., 2018 [171]	Double-blind, cross-over RCT	Healthy, n = 17	2 sourdough croissants	2 brewer's yeast croissants	Single study day	11% decrease in gastric volume AUC 3 h post-consumption ($p = 0.02$) 30% lower hydrogen production during the 4 h post-consumption ($p = 0.03$) Milder abdominal discomfort ($p = 0.002$), bloating ($p = 0.001$) and nausea ($p = 0.004$)
Raninen et al., 2017 [172]	Randomised cross-over trial	Minor gastrointestinal symptoms, n = 8	6–10 slices/day of sourdough wholegrain rye bread	6–10 slices/day of wheat bread enriched with bioprocessed (fermented) rye bran	4 weeks	Significant difference in exhaled breath volatile organic compound profile between groups in fasting state (p = 0.026). No difference was shown at 30, 60 and 120 min after a standardised meal
Laatikainen et al., 2016 [11]	Randomised, double-blinded, cross-over trial	Irritable bowel syndrome, n = 87	7-8 slices/day low FODMAP sourdough rye bread	7–8 slices/day traditional sourdough rye bread	4 weeks	Lower breath H ₂ in low FODMAP rye bread group compared to traditional rye bread (median AUC 53 ppm $vs73$; $p = 0.01$) Milder flatulence ($p = 0.04$), abdominal cramps ($p = 0.01$), rumbling ($p = 0.001$) and total symptoms ($p = 0.02$) No difference in IBS-SSS ($p = 0.40$). Lower weight in low FODMAP rye bread compared to traditional rye bread (mean difference -0.5 kg, 95% CI -0.9 -0.0 ; $p = 0.03$)
Laatikainen et al., 2017 [164]	Double-blinded RCT	Irritable bowel syndrome with subjective wheat intolerance, n = 26	6 slices/day sourdough wheat bread (fermentation time > 12 h)	6 slices/day yeast-fermented wheat bread (fermentation time approx. 2 h)	7 days	No difference in gastrointestinal symptoms or markers of low-grade inflammation. Worse symptoms of tiredness (p = 0.01), joint symptoms (p = 0.03) and "decreased alertness" (p = 0.003)
Di Cagno et al., 2010 [173]	Non-randomised, uncontrolled study	Coeliac disease, n = 8	200 g/day baked products with sourdough wheat flour (10 g hydrolysed gluten)	None	60 days	All patients had normal IgG and IgA-AGA and IgA-tTG antibodies values at the end of the intervention period
Mandile et al., 2017 [174]	RCT	Coeliac disease, n = 20	Sourdough wheat bread (fermented with lactobacilli and yeast)	Traditional wheat bread	3 days	No increase in INF-y secretion Mobilisation of INF-y secreting cells in the blood following traditional wheat bread

IBS-SSS Irritable Bowel Syndrome Severity Scoring System; RCT, randomized controlled trial.

Dimidi et al. (2019) Nutrients

Fermented foods and gastrointestinal health

In summary:

- Very limited evidence on the effectiveness of most fermented foods in gastrointestinal health
- Majority of studies being of low quality
- Kefir most studied
 - Lactose malabsorption
 - H Pylori eradication

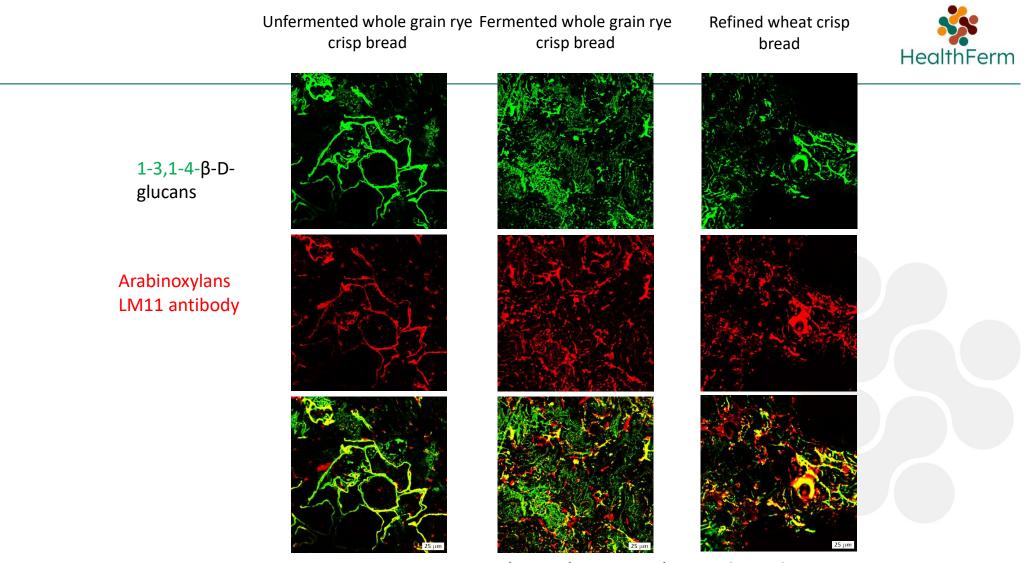
Metabolic effects of fermeted vs non-fermented rye crisp bread

RESEARCH ARTICLE

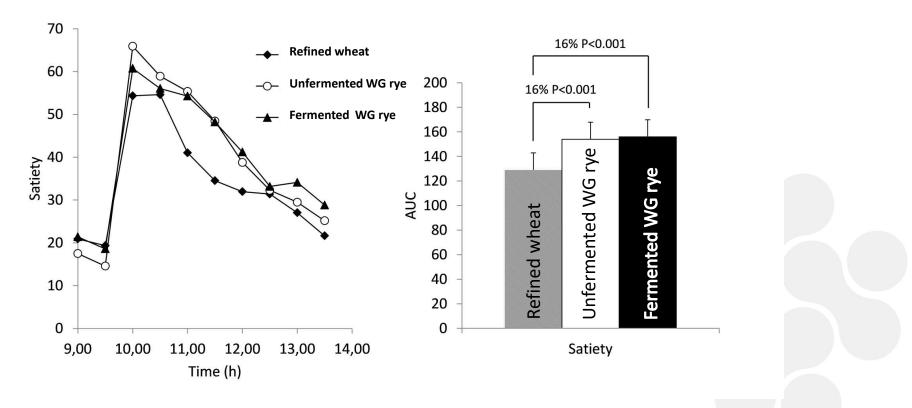
Effects of Unfermented and Fermented Whole Grain Rye Crisp Breads Served as Part of a Standardized Breakfast, on Appetite and Postprandial Glucose and Insulin Responses: A Randomized Cross-over Trial

Daniel P Johansson¹*, Isabella Lee¹, Ulf Risérus², Maud Langton¹, Rikard Landberg^{1,3}

1 Department of Food Science, BioCenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden, 2 Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden, 3 Nutritional Epidemiology Unit, Institute of Environmental Medicine, Karolinska Insitutet, Stockholm, Sweden

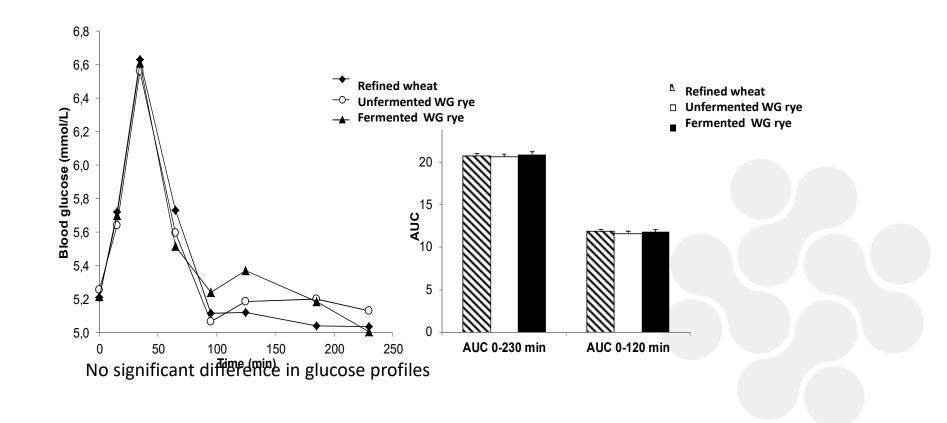

* daniel.p.johansson@slu.se

AIMS:


- Difference between fermented and unfermented bread?
 - Appetite
 - GLycemia

José Luis Vázquez Gutiérrez and Maud Langton

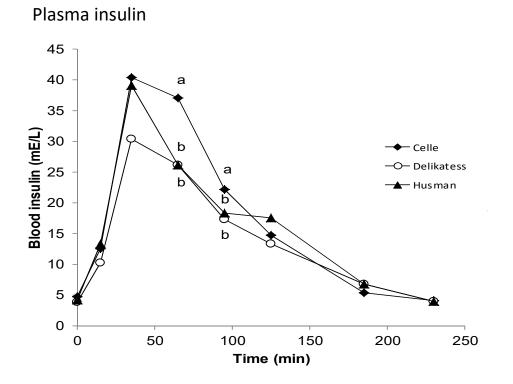
Results- Satiety



Differences between White- Husman & White- Delikatess (P<0.001)

D. Johansson, I Lee, U Risérus, M Langton, R Landberg (2015) PloS One

Results- Glucose



D. Johansson, I Lee, U Risérus, M Langton, R Landberg (2015) PloS One

Lower insulin secretion after rye- The "rye factor"-effect

Significant differences at certain time points (treatment x time P<0.05)

Johansson et al. (2015) PloS One

Follow-up study "Crisp II"

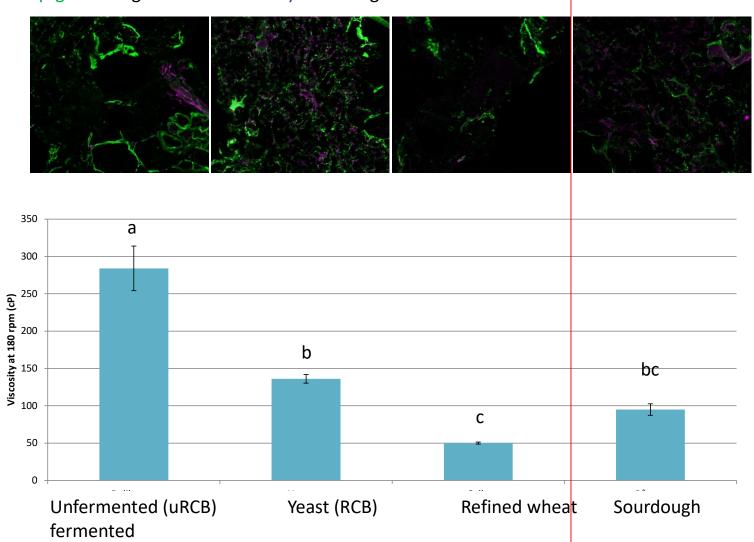
AIMs:

- Confirm effects of uRCB on appetite and postprandial insulin responses
- Evaluate the role of <u>sourdough fermented</u> rye crisp bread on appetite and metabolic effects

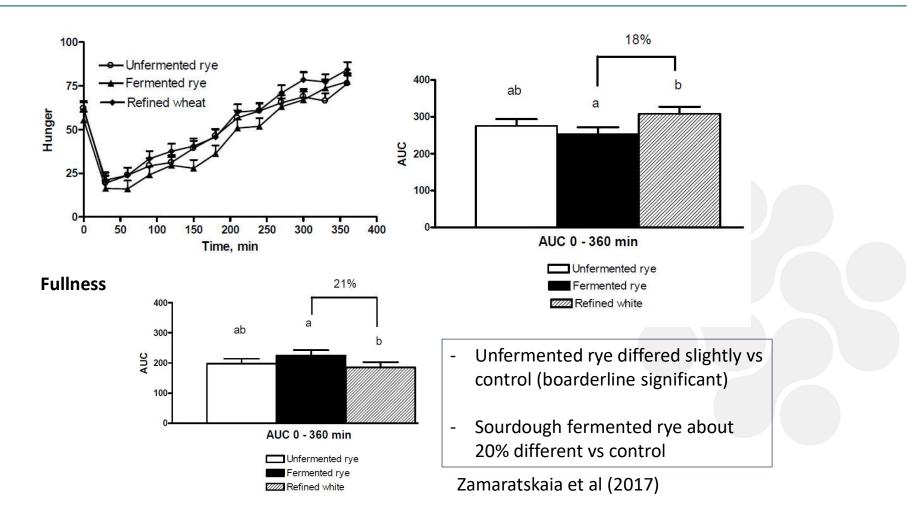
British Journal of Nutrition (2017), $\mathbf{118},\,686\text{--}697$ © The Authors 2017

doi:10.1017/S000711451700263X

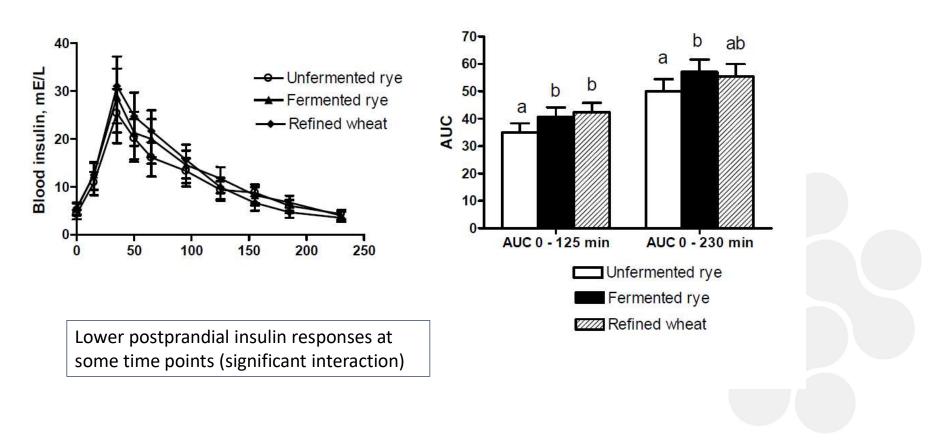
Impact of sourdough fermentation on appetite and postprandial metabolic responses – a randomised cross-over trial with whole grain rye crispbread


Galia Zamaratskaia¹*⁺ Daniel P. Johansson¹⁺, Matheus Antunes Junqueira¹, Linda Deissler¹⁺, Maud Langton¹, Per M. Hellström² and Rikard Landberg^{1,3}§ ¹Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden ²Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden ³Unit of Nutritional Epidemiology, Department of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden (Submitted 4 January 2017 – Final revision received 10 August 2017 – Accepted 8 September 2017)

Zamaratskaia et al (2017)



β -glucan in green and arabinoxylan in magenta


Effects on appetite

Effects on insulin

Zamaratskaia et al (2017)

Effects of rye and sourdough content- A cross-over breakfast study

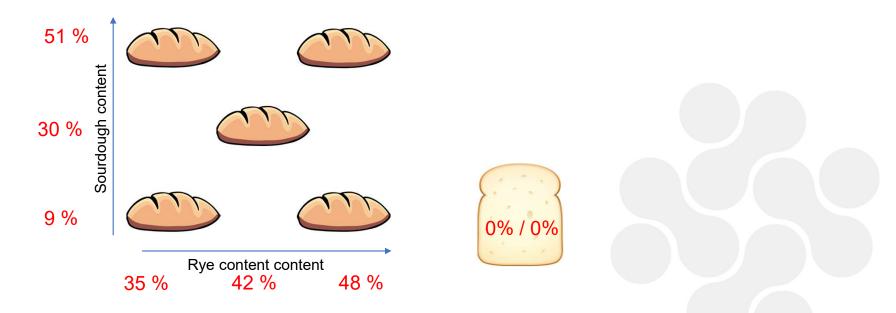
- 6 armed cross-over design
 - 5 sourdough rye breads
 - 1 refined wheat bread

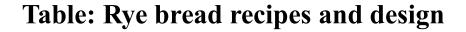
Appetite records every 30 minutes

7:30 Breakfast 11:30 Lunch

Cross-over breakfast study

- 23 healthy volunteers
 - 8 males / 15 females
- 23-63 years old




The content content

Sourdough rye bread

Sourdough rye bread

	R. sourdou		Rye	Wheat	Total	% Sourdough of	% Rye flour of
Bread sourdough/rye	ghª	Rye flour	total ^b	flour	water ^c	total dough	total flour
1. MS/MR	1250	500	1000	900	1570	30	42
2. HS/LR	2125	0	850	1050	1540	51	35
3. HS/HR	2125	300	1150	750	1540	51	48
4. LS/LR	375	700	850	1050	1600	9	35
5. LS/HR	375	1000	1150	750	1750	9	48

^a Sourdough consisting of 40:60 whole grain rye flour:water.

^b Sum of whole grain rye flour added and included in sourdough.

^c Sum of water added and included in sourdough

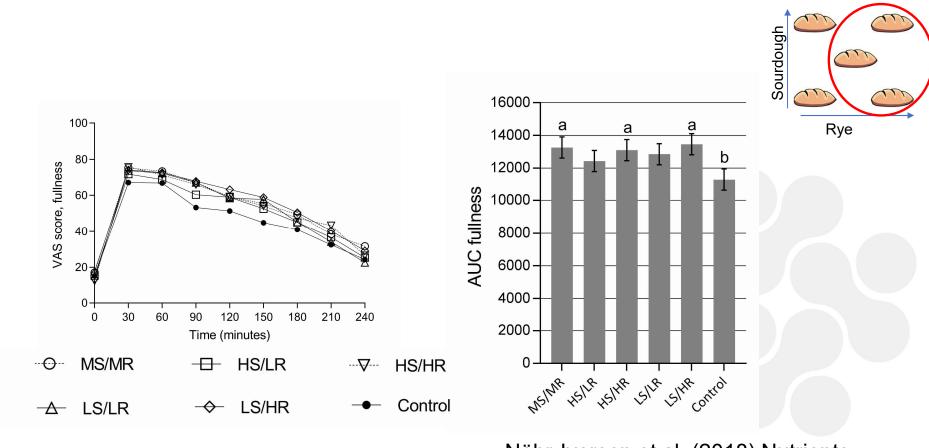
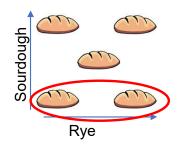
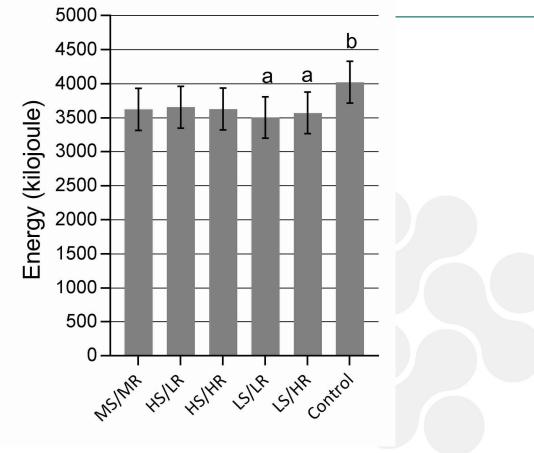


Table: Composition of rye breads (100 g- a serving in the study)

	MS/MR	HS/LR	HS/HR	LS/LR	LS/HR	Reference
Protein (g)	7.1	7.2	6.9	7.3	6.3	7.5
Fat (g)	2.2	2.2	2.2	2.2	1.9	3.9
Starch (g)	41.2	41.9	39.9	40.4	39.8	41.9
Total fiber ^a (g)	7.0	6.0	7.2	6.8	8.3	3.6
Soluble fiber (g)	2.3	2.0	2.5	2.1	2.7	1.6
Insoluble fiber (g)	4.7	4.0	4.7	4.7	5.5	3.0
Ash (g)	1.7	1.6	1.7	1.7	1.5	1.4
Water (g)	35.0	35.7	36.1	35.8	35.7	38.0
Energy (kJ) ^b	959	963	934	946	920	992
рН	4.4	4.2	4.2	5.2	5.3	5.0
Acid equivalents ^c	10.3	11.5	12.5	6.3	6.6	4.3
Lactic acid (g)	0.81	0.81	0.89	0.4	0.36	0.27
Acetic acid (g)	0.13	0.14	0.16	0.07	0.04	0.04

Fullness

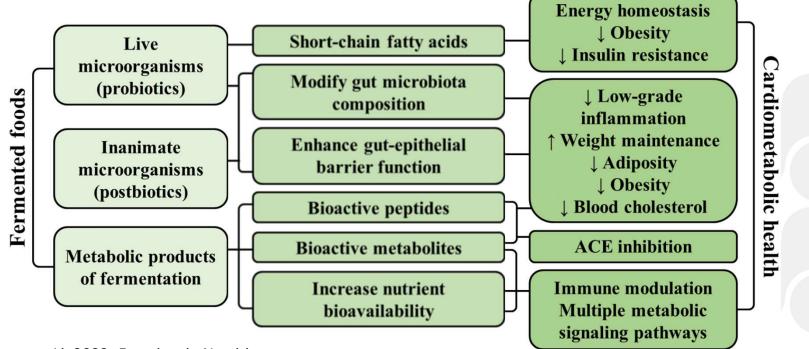



Nöhr-Iversen et al. (2018) Nutrients

32

Ad libitum lunch

Nöhr-Iversen et al. (2018) Nutrients

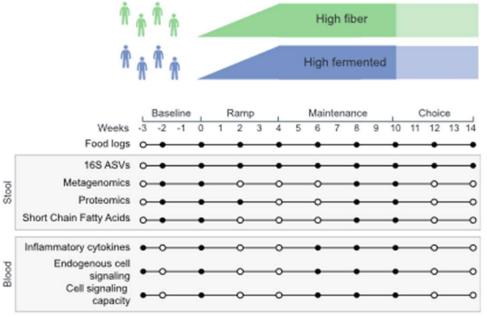


Conclusion

- No difference between the sourdough rye breads
- No indication of an effect of increasing sourdough content
 - Despite large difference, 9-51%
- Some indication of an effect of increasing rye content
 - Relatively small difference, 35-48%

Fermented foods and cardiometabolic health – proposed mechanisms

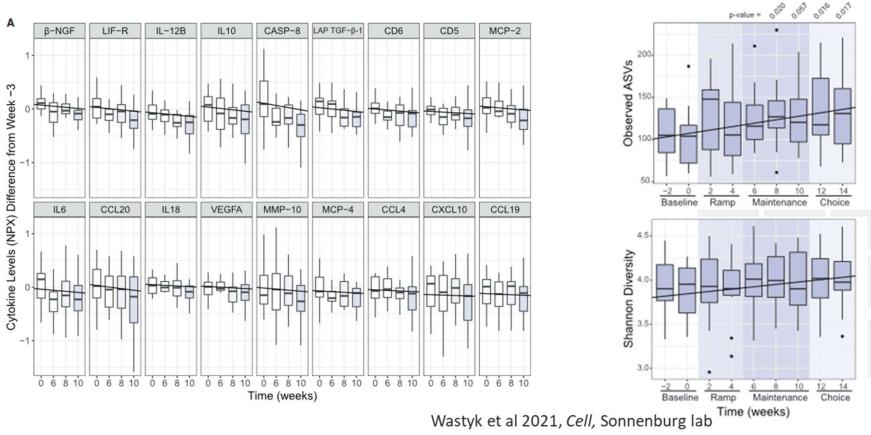
Li, 2022, Frontiers in Nutrition


Health benefits of fermented and high fiber foods – clinical trial

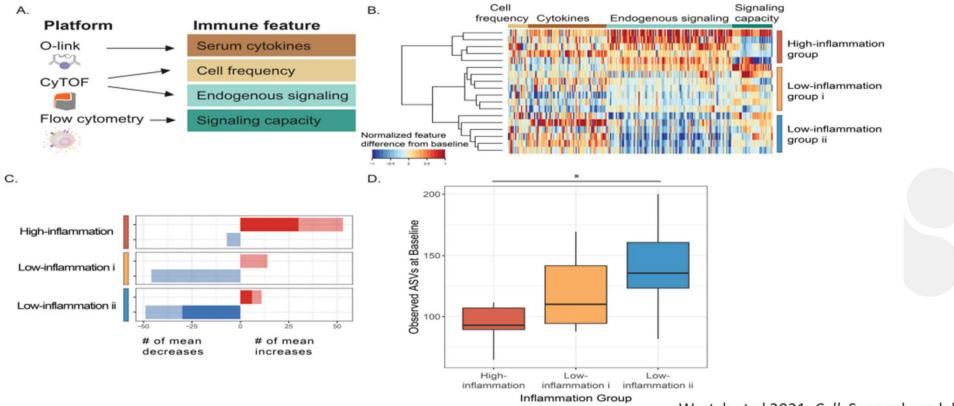
- Parallel study ٠
- Healthy adults, n=18 ٠
- Dietary fiber 20 g/day ٠
- Fermented food 6 servings/day ٠

Primary aim: Change in **Cytokine Response Score**

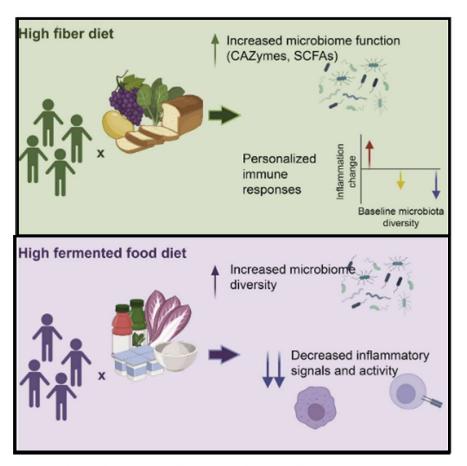
Secondary aims: Effect on microbiota, SCFAs, inflammatory markers, lipid profile



³⁶



Health benefits of fermented and high fiber foods – clinical trial



Inflammation response groups

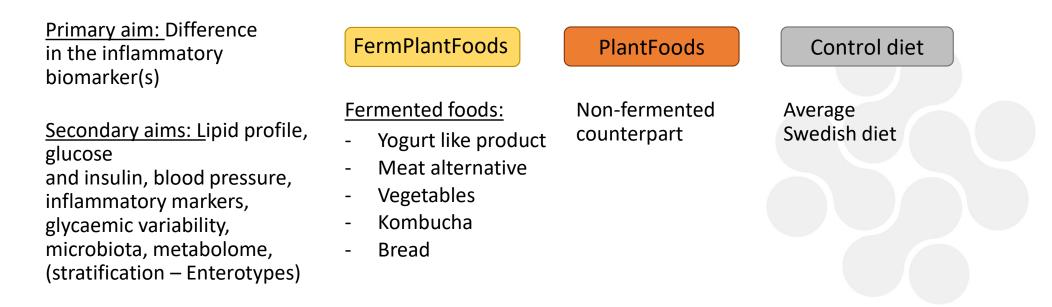
Wastyk et al 2021, Cell, Sonnenburg lab

Wastyk et al 2021, Cell, Sonnenburg lab

Plant-based fermented foods

for healthier and more sustainable diets HealthFerm is a Horizon Europe research project investigating innovative pulse and cereal-based food fermentations together with the health effects and consumer perception of novel fermented foods.

4-year project 23 partners



Funded by the European Union

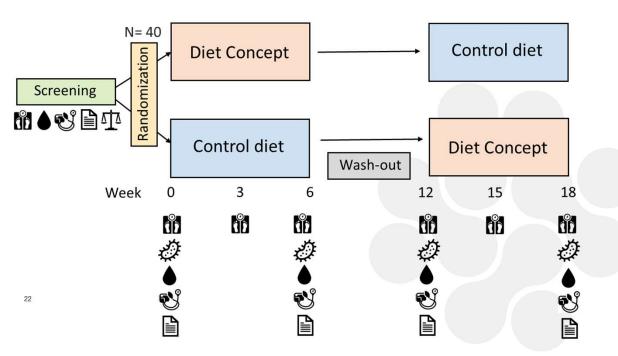

Fermented Plant-based Portfolio Diet 4 Metabolic Health (FermDiHealth)

- Randomized controlled crossover study
- Subjects with metabolic syndrome, n=100

Fermented Plant-based Portfolio Diet 4 Metabolic Health (FermDiHealth)

Food4GutMarKIT

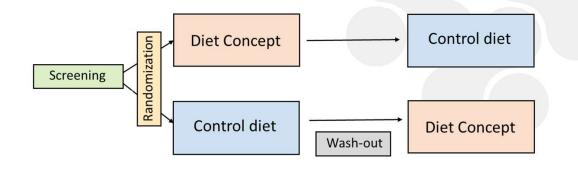
	Literature review	
Step 1	Identification of gut microbiota associated with reduction of cardiovascular risk factors → <i>F.prausnitzii, Oscillospiraceae, Faecalibacterium</i>	of
Step 2	Identified foods shown to increase these bacteria in humar intervention trials → Rich in fibers and whole grains + fermented foods	
Diet concept		
 Rich in fibers and whole grains + fermented foods (4 servings/day) Nordic Nutrition Recommendations 		Palmnäs et al <i>in preparation</i>



Food4GutMarKIT – clinical trial

- Randomized controlled cross-over study
- BMI<25, BMI>25
- Completers n=30

<u>Primary aim:</u> Effect on gut microbiota previously shown associated with reduction of cardiovascular risk factors


<u>Secondary aims: Effects on</u> lipids, blood pressure, fasting glucose, CRP and the metabolome.

GutMarkIT – clinical trial

Expected findings

- stay tuned! The intervention diet will alter specific microbes previously shown inversely _ associated with risk factors for cardiovascular disease
- Affected microbes will be linked with reduction of cardiovascular risk factors _
- The effect on microbiota will be mirrored in the metabolome _
- Differ between individuals with BMI <25 and BMI >25

FORMAS

Take home messages

- Fermented foods is s diverse group! Many different MOs and metabolites formed
- Several mechanisms at play at the same time
- Studies on non-dairy fermented foods and health are lacking
- RCTs on plant based fermented foods and helath are on the way

SVERIGES UNGA AKADEMI

Functional Food & Biotechnologies

2023-06-15

Assist. Prof Qi Sun Prof. Frank Hu

Lacueva

Prof. Cristina Andres-

Prof. Alicja Wolk Prof. Agneta Åkesson

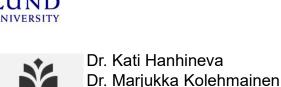
Prof. Karl Michaelsson Prof. Per Hellström Assoc. Prof Ulf Risérus Dr. Matti Marklund

Prof. Göran Hallmans Prof. Ingegerd Johansson Dr. Ingvar Bergdahl Prof. Bernt Lindahal Prof. Olle Rolandsson

Prof. Matti Uusitupa

Prof. Anne Tjönneland

Prof. Marju Orho-Melander


Dr. Jytte Halkjær Dr. Anja Olsen

Dr. Cecilie Kyrö

Prof. Anna Winkvist Prof. Göran Karlsson Prof. Fredrik Bäckhed Prof. Göran Bergström

LUND UNIVERSITY

UNIVERSITY OF EASTERN FINLAND

CHALMERS